(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
f(mark(X1), X2) → mark(f(X1, X2))
g(mark(X)) → mark(g(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(f(g(X), Y)) → mark(f(X, f(g(X), Y)))
active(f(X1, X2)) → f(active(X1), X2)
active(g(X)) → g(active(X))
proper(f(X1, X2)) → f(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

f(mark(X1), X2) → mark(f(X1, X2))
g(ok(X)) → ok(g(X))
top(ok(X)) → top(active(X))
f(ok(X1), ok(X2)) → ok(f(X1, X2))
g(mark(X)) → mark(g(X))
top(mark(X)) → top(proper(X))

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
mark0(0) → 0
ok0(0) → 0
active0(0) → 0
proper0(0) → 0
f0(0, 0) → 1
g0(0) → 2
top0(0) → 3
f1(0, 0) → 4
mark1(4) → 1
g1(0) → 5
ok1(5) → 2
active1(0) → 6
top1(6) → 3
f1(0, 0) → 7
ok1(7) → 1
g1(0) → 8
mark1(8) → 2
proper1(0) → 9
top1(9) → 3
mark1(4) → 4
mark1(4) → 7
ok1(5) → 5
ok1(5) → 8
ok1(7) → 4
ok1(7) → 7
mark1(8) → 5
mark1(8) → 8

(4) BOUNDS(1, n^1)

(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(ok(z0)) → ok(g(z0))
g(mark(z0)) → mark(g(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
Tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
TOP(ok(z0)) → c4(TOP(active(z0)))
TOP(mark(z0)) → c5(TOP(proper(z0)))
S tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
TOP(ok(z0)) → c4(TOP(active(z0)))
TOP(mark(z0)) → c5(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

f, g, top

Defined Pair Symbols:

F, G, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

TOP(ok(z0)) → c4(TOP(active(z0)))
TOP(mark(z0)) → c5(TOP(proper(z0)))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(ok(z0)) → ok(g(z0))
g(mark(z0)) → mark(g(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
Tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
S tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
K tuples:none
Defined Rule Symbols:

f, g, top

Defined Pair Symbols:

F, G

Compound Symbols:

c, c1, c2, c3

(9) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

f(mark(z0), z1) → mark(f(z0, z1))
f(ok(z0), ok(z1)) → ok(f(z0, z1))
g(ok(z0)) → ok(g(z0))
g(mark(z0)) → mark(g(z0))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
S tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
K tuples:none
Defined Rule Symbols:none

Defined Pair Symbols:

F, G

Compound Symbols:

c, c1, c2, c3

(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
We considered the (Usable) Rules:none
And the Tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1, x2)) = x2   
POL(G(x1)) = x1   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = [1] + x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
S tuples:

F(mark(z0), z1) → c(F(z0, z1))
K tuples:

F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
Defined Rule Symbols:none

Defined Pair Symbols:

F, G

Compound Symbols:

c, c1, c2, c3

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F(mark(z0), z1) → c(F(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F(x1, x2)) = x1   
POL(G(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:none
Tuples:

F(mark(z0), z1) → c(F(z0, z1))
F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
S tuples:none
K tuples:

F(ok(z0), ok(z1)) → c1(F(z0, z1))
G(ok(z0)) → c2(G(z0))
G(mark(z0)) → c3(G(z0))
F(mark(z0), z1) → c(F(z0, z1))
Defined Rule Symbols:none

Defined Pair Symbols:

F, G

Compound Symbols:

c, c1, c2, c3

(15) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(16) BOUNDS(1, 1)